일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 |
- 정형데이터
- 분석
- 공유경제
- 인과추론
- Toastmaster
- 사이허브
- 제약
- 연설
- 데분
- 2018계획
- PGTM
- CC#3
- 영화
- 영어연설
- CC#5
- 토스트마스터
- Public Speaking
- publicspeaking
- 구글#빅쿼리#데이터분석
- 취업
- 데이터분석
- 데이터
- 카이제곱분포
- 임상통계
- 엘뱌키안
- 풀러스
- 평창
- F분포
- 대중연설
- SQLD
- Today
- Total
목록2024/06/11 (2)
지지플랏의 DataScience
1. 생존분석이란시간-이벤트 데이터(예: 생존 시간, 고장 시간 등)를 분석하는 데 사용됨주요 목표는 생존 시간 분포를 추정하고, 생존 시간에 영향을 미치는 요인을 식별하며, 여러 그룹 간의 생존 시간을 비교하는것. 대표적인 방법으로 LogRank, 카플란-마이어 추정법, 콕스 비례위험 모형이 있다. 2.1. 카플란-마이어 추정법 (Kaplan-Meier Estimator)특정 시간까지 이벤트가 발생하지 않을 확률(생존 함수)을 비모수적으로 추정하는 방법각 시간 점에서 생존 확률을 계산하고, 이를 통해 전체 생존 곡선을 작성.사건이 독립적이라는 가정이 있지만, 실제로는 이 가정이 항상 만족되지 않을 수 있음(실제로 병은 누적되는 대미지가 있으므로)$ \hat{S}(t) = \prod_{t_i \leq t..
1. 목차5.3. 로지스틱회귀5.4. 분류모델 평가하기5.4.1 ~ 3. 혼동행렬, 분류문제, 정밀도, 재현율, 특이도5.4.4 ~ 5: ROC곡선, AUC 5.4.6. 향상도(lift) 2. 본문늘 머신러닝을 배울 때 선형회귀만큼은 잘 이해가 된다. 선형직선은 중학교때부터 배웠기에 익숙하고 에러의 개념을 받아들이기도 어렵지않으니까. 하지만 이 로지스틱 회귀라는 놈은 늘 어딘가 2% 부족한 설명을 하게되는 경우가 많다. 왜그럴까? 일단 첫 번째 문턱은 바로 오즈비(odds ratio)에 대한 생소함이라고 생각한다. 2.1. 로지스틱 회귀2.1.0. 나이브한 접근법본격적으로 들어가기 전 선형회귀로 한번 이진 분류를 예측한다고 해보자. import matplotlib.pyplot as pltimport ..